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1. Introduction

Braneworld model has received renewed interest in recent years. By this scenario our

world is represented by a four dimensional sub-manifold, a three-brane, embedded in a

higher dimensional spacetime [1, 2]. The idea that our Universe may have more than four

dimensions was proposed by Kaluza [3], with the objective to unify gauge theories with

gravitation in a geometric formalism. Of particular interest are the models introduced by

Randall and Sundrum [4, 5]. The corresponding spacetime contains two (RSI), respectively

one (RSII), Ricci-flat brane(s) embedded on a five-dimensional Anti-de Sitter (AdS) bulk.

It is assumed that all matter fields are confined on the branes and gravity only propagates

in the five dimensional bulk. In the RSI model, the hierarchy problem between the Planck
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scale and the electroweak one is solved if the distance between the two branes is about 37

times the AdS radius.

Although topological defects have been first analysed in four-dimensional spacetime [6,

7], they have been considered in the context of braneworld. In this scenario the defects

live in a n−dimensions submanifold embedded in a (4 + n)−dimensional Universe. The

domain wall case, with a single extra dimension, has been considered in [2]. More recently

the cosmic string case, with two additional extra dimensions, has been analysed [8, 9].

It has been shown that the gravitational effects of global strings can be responsible for

compactification from six to four spacetime dimensions, naturally producing the observed

hierarchy between electroweak and gravitational forces.

Cosmic strings are topologically stable gravitational defects which appear in the frame-

work of grand unified theories. These objects could be produced in very early Universe as a

result of spontaneous breakdown of gauge symmetry [6, 7]. Although the recent observation

data on the cosmic microwave background have ruled out cosmic strings as the primary

source for primordial density perturbation, they are still candidate for the generation of a

number of interesting physical effects such as gamma ray burst [10], gravitational waves [11]

and high energy cosmic ray [12]. Recently, cosmic strings have attracted renewed interest

partly because a variant of their formation mechanism is proposed in the framework of

brane inflation [13]–[15].

The simplest theoretical model describing an idealized cosmic string, i.e., straight and

infinitely thin, is given by a delta-type distribution for the energy-momentum tensor along

the linear defect. As the solution of the Einstein equation, the geometry of the space-time

produced by this source presents a conical singularity for the curvature tensor on its top.

Under classical field theory viewpoint, this object can also be formed coupling the energy-

momentum tensor associated with the Higgs U(1)−gauge system investigated by Nielsen

and Olesen [16] with the Einstein equations. This project was successfully analysed by

Garfinkle [17]. He found static cylindrically symmetric solutions representing vortices, as

in flat space-time, and shown that asymptotically the space-time around the vortices is a

Minkowski one minus a wedge. Their core have a non-zero thickness, and the magnetic

fields vanishes outside them. Two years later Linet [18] obtained, as a limit case, exact

solutions for the metric tensor and Higgs field. He was able to show that the structure of

the respective space-time corresponds to a conical one, with the conicity parameter being

expressed in terms of the energy per unity length of the vortex.

The vacuum polarization effects associated with scalar and fermionic fields in the

space-time of an idealized cosmic string, have been analyzed in [19]–[24], and [25]–[28],

respectively. It has been shown that these effects depend on the parameter which codify the

conical structure of the geometry. Moreover, considering the presence of magnetic flux along

the cosmic strings, there appears an additional contributions to the vacuum polarization

effect associated with charged fields [29]–[33]. Another type of vacuum polarization takes

place when boundaries are presents. The imposed boundary conditions on quantum fields

modifies the zero-point energy fluctuations spectrum and result in additional shifts in the

vacuum expectation values of physical quantities, such as energy density and stress. This
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is the well-known Casimir effects.1 The analysis of Casimir effects in the idealized cosmic

string space-time have been developed for a scalar [35] and vector fields [36], obeying

boundary conditions on the cylindrical surfaces.2

The investigation of quantum effects in corresponding braneworld models is of con-

siderable phenomenological interest, both in particle physics and cosmology. Quantum

effects provide natural alternative for stabilizing the radion fields in a braneworld. The

corresponding vacuum energy gives contribution to both the brane and bulk cosmological

constant and, hence, has to be taking into account in the self-consistent formulation of

the braneworld dynamics. Recently the fluxes by gauge fields play an important role in

higher dimensional models including braneworld scenario (see for example [38]). They pro-

vide stabilization mechanism for all moduli fields appearing, in particular, in various string

compactifications. Motivated by these facts, we decided to analyse the vacuum polariza-

tion effects associated with a charged spin−1/2 field in a higher-dimensional cosmic string

space-time considering an infinitely thin magnetic flux running along it. Specifically we

are interested to calculate the vacuum expectation value (VEV) of the energy-momentum

tensor. Although, as we shall see, for a (d + 1)−dimensional cosmic string space-time,

the renormalized VEV of the energy-momentum tensor associated with massless quantum

fields presents the general form below

〈TA
B 〉Ren. =

FA
B

rd+1
, (1.1)

being r the azimuthal distance to the string, the components of the tensor FA
B have different

expressions depending on the dimension of the manifold.

This paper is organized as follows: In section 2 we present a general expression for

a charged massless spin−1/2 Green function valid for an arbitrary (1 + d)−dimensional

cosmic string space-time, d ≥ 2. Although our main objective is to investigate the vacuum

polarization effects in a six-dimensional spaces, the Green function obtained allows us to

develop this analysis for lower dimensions as well. Moreover, in this section we also present

a general expression for Green function associated with massive field for a particular choice

of the parameters which codify the presence of cosmic string, and the fractional part of the

ratio of the magnetic flux by the quantum one. In this way, the massive fermionic Green

function is expressed in terms of a finite sum of modified Bessel function Kν , allowing us

to present the renormalized VEV of the energy-momentum tensor in a closed form. In

the section 3 we investigate the spinor Green functions in coincidence limit and extract

all divergences in manifest form. Using this result, we provide explicit expressions for all

components of the renormalized VEV of the energy-momentum tensor for different dimen-

sions of the space, and for massless and massive fields. In section 4, we summarize the

most important results obtained. In appendix A we present a generalization of the gener-

ation function for the modified Bessel functions, needed to construct the fermionic Green

function as a finite sum of images of the Minkowski space-time functions. The appendix B

1For a review, see ref. [34]
2Also vacuum polarization effects induced by a composite topological defect has been analysed in [37]
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contains some technical formulas related with the calculation of the renormalized VEV of

the energy-momentum tensor in section 3.

2. The spinor Green function

This section is mainly devoted to calculate the Feynman propagator associated with a

charged fermionic field propagating in a (d + 1)−dimensional cosmic string space-time

whose geometry is given by the line element

ds2 = gMNdxMdxN = −dt2 + dr2 + α2r2dϕ2 +
∑

i

(dxi)2 . (2.1)

Specifically for a six-dimensional space, the coordinate system reads: xM = (t, r, ϕ, x, y, z),

with r ≥ 0, ϕ ∈ [0, 2π], and t, xi ∈ (−∞, ∞), i = 3, 4, 5. α is parameter smaller than

unity associated with the linear mass density of the string. In the braneworld scenario the

space-time given by (2.1), the bulk, represents a conical 3−brane transverse to a two flat

space.

In order to develop the calculation of the spinor Green function we shall adopt the

8 × 8 Dirac matrices ΓM given below, which can be constructed in terms of the 4 × 4

ones [39, 40]:

Γ0 =

(

0 γ0

γ0 0

)

, Γr =

(

0 r̂ · ~γ
r̂ · ~γ 0

)

, Γϕ =
1

αr

(

0 ϕ̂ · ~γ
ϕ̂ · ~γ 0

)

,

Γx =

(

0 γ(3)

γ(3) 0

)

, Γy =

(

0 iγ5

iγ5 0

)

, Γz =

(

0 I

−I 0

)

, (2.2)

where γ5 = iγ0γ1γ2γ3, I represents the 4×4 identity matrix and r̂ and ϕ̂ stand the ordinary

unit vectors in cylindrical coordinates. This set of matrices satisfies the Clifford algebra

{ΓM , ΓN} = −2gMN I(8).

In the analysis of the vacuum polarization effects, we also consider the presence of an

extra magnetic field running along the string. This magnetic field configuration is given

by the following six-vector potential

AM = A∂Mϕ (2.3)

being A = Φ
2π .

The spinor Feynman propagator, defined as [41]

iSF (x, x′) = 〈0|T (Ψ(x)Ψ̄(x′))|0〉 , (2.4)

with Ψ̄ = Ψ†Γ0, satisfies the non-homogeneous linear differential equation,

(i6∇ + e6A − M)SF (x, x′) =
1√−g

δ6(x − x′)I(8) , (2.5)

where g = det(gMN ). The covariant derivative operator reads

6∇ = ΓM (∂M + ΠM ) , (2.6)
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being ΠM the the spin connection given in terms of the Γ−matrices by

ΠM = −1

4
ΓN∇MΓN , (2.7)

and

6A = ΓMAM . (2.8)

The Green function given in (2.5) is a bispinor, i.e., it transforms as Ψ at x and as Ψ̄ at x′.
In [33] we have shown that if a bispinor, DF (x, x′), satisfies the differential equation

[

� − iegMN (DMAN ) + ieΣMNFMN − 2iegMNAM∇N

−e2gMNAMAN − M2 − 1

4
R
]

DF (x, x′) = − 1√−g
δ6(x − x′)I(8) , (2.9)

with

ΣMN =
1

4
[ΓM ,ΓN ] , DM = ∇M − ieAM , (2.10)

R being the scalar curvature and the generalized d’Alembertian operator given by

� = gMN∇M∇N = gMN
(

∂M∇N + ΠM∇N − {S
MN}∇S

)

,

then the spinor Feynman propagator may be written as

SF (x, x′) = (i6∇ + e6A + M)DF (x, x′) . (2.11)

Applying this formalism for the system under investigation the operator K, which acts

on the left hand side of (2.9), reads

K = ∆ +
i

α2r2
(1 − α)Σ3

(8)∂ϕ − 1

4α2r2
(1 − α)2 +

e

α2r2
(1 − α)AΣ3

(8)

− 2ie

α2r2
A∂ϕ − e2

α2r2
A2 − M2 , (2.12)

where

Σ3
(8) =

(

Σ3 0

0 Σ3

)

, with Σ3 =

(

σ3 0

0 σ3

)

(2.13)

and3

∆=−∂2
t +∂2

r +
1

r
∂r+

1

α2r2
∂2

ϕ+∂2
x+∂2

y +∂2
z . (2.14)

Due to the fact of Σ3
(8) be a diagonal matrix, the bispinor DF (x, x′) is diagonal, too. In

this way we can obtain an expression for this Green function analyzing only the effective

2 × 2 matrix differential equation below:
[

∆ +
i

α2r2
(1 − α)σ3∂ϕ − 1

4α2r2
(1 − α)2 +

e

α2r2
(1 − α)Aσ3

− 2ie

α2r2
A∂ϕ − e2

α2r2
A2 − M2

]

D(2)
F (x, x′) = − 1√−g

δ6(x − x′)I(2) . (2.15)

3For this geometry the only non-vanishing spin connection is Πϕ = i
2
(1 − α)Σ3

(8).
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So the complete Green function is given in terms of D(2)
F (x, x′), in a diagonal matrix form.

On basis of these results, for this six-dimensional cosmic string space-time, the

fermionic propagator reads:

SF (x, x′)=

[

iΓ0∂t+iΓr∂r+iΓϕ∂ϕ+iΓi∂i−
1−α

2
ΓϕΣ3

(8)+
eΦ

2π
Γϕ+M

]

DF (x, x′) . (2.16)

The vacuum average value for the energy-momentum tensor can be expressed in terms

of the Euclidean Green function. It is related with the ordinary Feynman Green func-

tion [41] by the relation DE(τ, ~r; τ ′, ~r′) = −iDF (x, x′), where t = iτ . In the following we

shall consider the Euclidean Green function.

In order to obtain the Euclidean Green function D(2)
E (x, x′) in explicit form, let us find

the complete set of bispinor which obey the eigenvalue equation

K̄Φλ(x) = −λ2Φλ(x) (2.17)

with λ2 ≥ 0 and being K̄ the Euclidean version of the differential operator given in (2.15).

So we may write

D(2)
E (x, x′) =

∑

λ2

Φλ(x)Φ†
λ(x′)

λ2
=

∫ ∞

0
ds
∑

λ2

Φλ(x)Φ†
λ(x′) e−sλ2

. (2.18)

The eigenfunctions of (2.17) can be specified by a set of quantum number associated with

operators that commute with K̄ and among themselves: pτ = −i∂τ , pi = −i∂i for i =

3, 4, 5 , Lϕ = −i∂ϕ and the spin operator, σ3. Let us denote these quantum numbers by

(kτ , ki, n, σ), where (kτ , ki) ∈ (−∞, ∞), n = 0, ±1, ±2, . . . , σ = ±1. Moreover, these

functions also depend on the number p, which satisfies the relation λ2 = p2 + k2 + M2 and

assumes values in the interval [0, ∞).

Although we have developed this formalism for a six-dimensional cosmic string space-

time, it can be adapted for a three, four and five dimensional spaces. The reason resides

in the representations adopted for the Dirac matrices in these dimensions. For three di-

mensional case the Dirac matrices are given in terms of 2× 2 Pauli matrices. For four and

five dimensions, the Dirac matrices are given by the 4 × 4 off-diagonal matrices from the

first four and five matrices given in (2.2). Of course for these cases we have to discard the

derivative associated with the respective extra coordinates in (2.14). So on basis on these

arguments it is possible to generalize the eigenfunction of the operator (2.17) by:

Φ
(+)
λ (x) =

eik.x√p

[α(2π)N+1]1/2
einϕJ|ν+|/α(pr)ω(+) ,

Φ
(−)
λ (x) =

eik.x√p

[α(2π)N+1]1/2
einϕJ|ν−|/α(pr)ω(−) (2.19)

where

ω(+) =

(

1

0

)

, ω(−) =

(

0

1

)

(2.20)
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are the eigenfunctions of the the operator σ3, Jµ(z) is the Bessel function, and ν± =

n ± (1−α)
2 − (N̄ + γ), where we have defined eA = e Φ

2π = N̄ + γ, the ratio of the magnetic

flux by the quantum one, in terms of an integer number, N̄ , and its fractional part, γ.

In (2.19) we may assume N = 1, 2, 3, 4, which are related with the dimensions of the

space considered: three, four, five or six, as explained before.

Now we are in position to calculate the Green function by using (2.18), (2.19) and (2.20)

as show below

D(2)
E (x, x′) =

1

α(2π)N+1

∫ ∞

0
ds

∫

dNk

∫ ∞

0
dp p eik(x−x′)

∑

n

ein(ϕ−ϕ′)

×diag(J|ν+|/α(pr)J|ν+|/α(pr′), J|ν−|/α(pr)J|ν−|/α(pr′)) e−s(p2+k2+M2) . (2.21)

With the help of [42] we can express (2.21) by

D(2)
E (x, x′) =

1

α(4π)N/2+1

∫ ∞

0

ds

sN/2+1
e−

(∆x)2+r2+r′2

4s
−M2s

∑

n

ein(ϕ−ϕ′)

×diag(I|ν+|/α(rr′/2s), I|ν−|/α(rr′/2s)) , (2.22)

where Iµ(z) is the modified Bessel function.

The calculations of the renormalized VEV of the energy-momentum tensor associated

with massive quantum fields in cosmic string space-time, have been developed by many

authors cited in [25, 29]. All of these calculations involve very complicated integrals.

In order to present more suitable expressions, the authors make applications taking the

massless limit in previous results. Here, in this paper, we shall explicitly exhibit the

renormalized vacuum expectation value of the fermionic energy-momentum tensor for

different dimensions of the space-time in closed expressions. So, in order to do that we

shall consider two different limiting cases which allow us to reach this objective as shown

in the following subsections.

2.1 Massless fermionic fields

In this subsection we shall calculate the bispinor associated with a charged massless

fermionic fields in an arbitrary dimensional cosmic string space-time. So taking M = 0

in (2.22) we obtain [42]

D(2)
E (x, x′) =

1

α(2π)
N+3

2

1

(rr′)
N
2

1

(− sinhu)
N−1

2

×
∑

n

ein(ϕ−ϕ′)





Q
N−1

2

|ν+|/α−1/2
(cosh u) 0

0 Q
N−1

2

|ν−|/α−1/2
(cosh u))



 , (2.23)

where

cosh u =
(∆x)2 + r2 + r′2

2rr′
. (2.24)
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In the above expression, Qλ
ν is the associated Legendre function. It is possible to express

this function in terms of hypergeometric function [42] by:

Qλ
ν (cosh u) = eiλπ2λ√π

Γ(ν + λ + 1)

Γ(ν + 3/2)

e−(ν+λ+1)u

(1 − e−2u)λ+1/2
(sinh u)λ

×F

(

λ + 1/2 , −λ + 1/2 ; ν + 3/2 ;
1

1 − e2u

)

. (2.25)

In this analysis we identify the parameter ν with |ν±|/α− 1/2 and take λ = (N − 1)/2. So

the relevant hypergeometric function is

F

(

N

2
, −N − 2

2
; |ν±|/α + 1 ;

1

1 − e2u

)

.

If N is a even number, this function becomes a polynomial of degree N−2
2 ; however being

N an odd number, this function is an infinite series.

As special applications of this formalism, let us consider specific values for N as shown

in the following.

2.1.1 N=1

For this case the manifold corresponds to a three-dimensional cosmic string space-time.

The Green function can be obtained by substituting the Legendre function by its integral

representation below [42],

Qν−1/2(cosh u) =
1√
2

∫ ∞

u
dt

e−νt

√
cosh t − cosh u

, (2.26)

in (2.23) and developing the sum over n. After some steps we get

D(2)
E (x′, x) =

eiN̄(ϕ−ϕ′)

α(2π)2
√

2rr′





∫∞
u dt S(+)(t)√

cosh t−cosh u
0

0
∫∞
u dt S(−)(t)√

cosh t−cosh u



 ,

(2.27)

where

S(±)(t) =
e∓i(ϕ−ϕ′) sinh(δ±t/α) − sinh[(δ± − 1)t/α]

cosh(t/α) − cos(ϕ − ϕ′)
, (2.28)

being δ± = (1−α)
2 ∓ γ.

2.1.2 N=2

For the case with N = 2 the bulk corresponds to a four-dimensional cosmic string space-

time. For this case the Green function is very well known. It takes a simple form due to

the fact that the respective associated Legendre functions be expressed by

Q
1/2
ν−1/2(cosh u) = i

√

π

2

e−νu

√
sinh u

. (2.29)

– 8 –
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Substituting this function into (2.23) it is possible to develop the sum on the angular

quantum number n, providing

D(2)
E (x′, x) =

eiN̄(ϕ−ϕ′)

8π2αrr′ sinh u

(

S(+)(u) 0

0 S(−)(u))

)

,

(2.30)

with S(±)(u) having the same functional form as S(±)(t) in (2.28).

2.1.3 N=3

This case is a new one, it corresponds to a five dimensional cosmic string space-time having a

magnetic flux running along the string. For this case the bispinor depends on the associated

Legendre function Q1
ν(z), which can be expressed in a integral representation by using the

relation Q1
ν(z) = (z2 − 1)1/2 dQν(z)

dz and (2.26). After some intermediates steps we obtain

D(2)
E (x′, x)=− eiN̄(ϕ−ϕ′)

√
2(2π)3α(rr′)3/2

d

dz





∫∞
arccoshz dt S(+)(t)√

cosh t−z
0

0
∫∞
arccoshz dt S(−)(t)√

cosh t−z



 |z=cosh u .

(2.31)

2.1.4 N=4

This case is also a new one, it corresponds to a six-dimensional cosmic string space-time.

The complete Green function is expressed by a 8 × 8 diagonal matrix. As in (2.1.2), this

function can also be written in terms of elementary functions. The reason is because for

N = 2, D(2)
E (x′, x) depends on Q

3/2
ν−1/2(z), which is given by

Q
3/2
ν−1/2(cosh u) = −i

√

π

2 sinh u
e−νu (cosh u + ν sinhu)

sinhu
. (2.32)

Substituting this expression into (2.23), and after some intermediate steps we arrive to:

D(2)
E (x′, x) =

eiN̄(ϕ−ϕ′)

16π3α(rr′)2 sinh3 u
(2.33)

×
(

cosh uS(+)(u)−sinh uS′(+)(u) 0

0 cosh uS(−)(u)−sinhS′(−)(u)

)

,

where the prime denotes derivative with respect to u.

2.2 Special case where α = 1
q being q an integer number

In this subsection we shall provide a closed expression for the bispinor considering a non-

vanishing mass term for the fermionic field. This will happen for a very special situation

when α is equal to the inverse of an integer number. Smith, Davies and Sahni, and

Souradeep and Sahni, cited in [19], have shown that when this occur, i.e., for α = 1
q , the

scalar Green functions can be given as a sum of q images of the Minkowsiki space-time

functions. Recently the image method was also used in [35] to provide closed expressions

– 9 –
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for massive scalar Green functions for a higher-dimensional cosmic string space-time. The

mathematical reason for the use of image method in these applications resides in the fact

that the order of the Bessel functions which appear in the derivations of the Green functions,

become an integer number. Unfortunately, for the fermionic case, the order of the Bessel

function depends, besides the integer angular quantum number n, also on the the factor
(1−α)

2 . However, if we consider a charged fermionic field in the presence of a magnetic flux

running along the string, an additional effective extra factor will be present, the fractional

part of the ratio of the magnetic flux by the quantum one, γ. For the case where γ is equal

to (1−α)
2 , and α = 1/q, the order of the Bessel function becomes an integer number, and, in

this case it is possible to use the image method to obtain the fermionic Green function in a

closed form. Although being a very special situation, the analysis of vacuum polarization

effects in this circumstance may shed light on the qualitative behavior of these quantities

for non-integer q.

2.2.1 Heat kernel

Let us now investigate the effective 2×2 diagonal matrix heat kernel, given in the integrand

of (2.18). Using (2.22), we have

K(x, x′; s) =
e−

(∆x)2+r2+r′2

4s
−M2s

α(4πs)N/2+1

∑

n

ein∆ϕ

(

I|ν+|/α(rr′/2s) 0

0 I|ν−|/α(rr′/2s)

)

. (2.34)

Defining

K̄(+)(x, x′; s) =
∑

n

ein∆ϕI|ν+|/α(rr′/2s) (2.35)

with ν+ = n+ (1−α)
2 − N̄ − γ, we can see that for γ = (1−α)

2 and assuming α = 1
q , the order

of the modified Bessel function becomes an integer number if q is also an integer number.

In this way (2.35) can be expressed by [43]:4

K̄(+)(x, x′; s) = eiN̄∆ϕ
∑

n

ein∆ϕInq(rr
′/2s) = eiN̄∆ϕ 1

q

q−1
∑

k=0

e
rr′

2s
cos

“

∆ϕ
q

+ 2πk
q

”

. (2.36)

Analogously, defining

K̄(−)(x, x′; s) =
∑

n

ein∆ϕI|ν−|/α(rr′/2s) (2.37)

with ν− = n − (1−α)
2 − N̄ − γ = n − N̄ − 1 + α, we obtain

K̄(−)(x, x′; s) = ei(N̄+1)∆ϕ
∑

n

ein∆ϕInq+1(rr
′/2s) . (2.38)

Using the recurrence relation, Iν+1(z) = I ′ν(z) − ν
z Iν(z) and eq. (2.36), we get, after some

steps, the following expression:

K̄(−)(x, x′; s) = ei(N̄+1−1/q)∆ϕ 1

q

q−1
∑

k=0

e
rr′

2s
cos

“

∆ϕ
q

+ 2πk
q

”

e−
2ikπ

q . (2.39)

4See the proof in appendix A
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The Green function is given by

D(2)
E (x′, x) =

∫ ∞

0
ds K(x, x′; s) . (2.40)

Using (2.36), (2.39) and with help of [42], this function becomes

D(2)
E (x′, x) =

eiN̄∆ϕ

(2π)N/2+1
MN/2

q−1
∑

k=0

1

(ρk)N/2
KN/2(Mρk)

(

1 0

0 ei(1−1/q)∆ϕe−2iπk/q

)

, (2.41)

with

ρ2
k = (∆x)2 + r2 + r′2 − 2rr′ cos (∆ϕ/q + 2πk/q) , (2.42)

being Kµ the modified Bessel function.

As we can see, the above Green function of the square of the Dirac operator corre-

sponds, up to a phase factor, to a sum of q images of Minkowski space-time functions. For

q = 1, and N = 2, the above expression reduces to the standard four-dimensional Green

function

D(2)
E (x′, x) =

eiN̄∆ϕ

4π2

M

ρ0
K1(Mρ0) I(2) . (2.43)

We want to finish this section by saying that having obtained the complete Green

functions associated with the square of the Dirac operator, for massless and massive fields,

the fermionic propagators can be given by applying the Dirac operator on this bispinor

according to (2.11).

3. Vacuum expectation value of the energy-momentum tensor

In this section we shall calculate in a explicit form the renormalized vacuum expectation

value of the energy-momentum tensor, 〈TA
B 〉Ren.. As we have already mentioned in the last

section, two physical situations will be considered here. Because the metric tensor does

not depend of any dimensional parameter, for the massless fermionic field case we can infer

that the VEV of the energy-momentum tensor will depend only on the radial distance r.

For massive fermionic case, it is expected a dependence on the mass of the field too.

The renormalized VEV of the energy-momentum tensor must obey the conservation

condition,

∇A〈TA
B 〉Ren. = 0 , (3.1)

and for massless fields provide the correct trace anomaly for space-time of even

dimension [44]:

〈TA
A 〉Ren. =

1

(4π)
1+d
2

Tr a 1+d
2

(x, x) . (3.2)
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However, because this space-time is locally flat and there is no magnetic field in the region

outside the string, the coefficients a2 and a3 vanish [45, 48].5 As we shall see, taking into ac-

count these informations, it is possible to express all components of the energy-momentum

tensor in terms of only one. Here we shall calculate the energy density only.

Using the point-splitting procedure [41], the VEV of the energy-momentum tensor has

the following form:

〈TAB(x)〉 =
1

4
lim

x′→x
Tr
[

ΓA(DB − D̄B′) + ΓB(DA − D̄A′)
]

SF (x, x′) , (3.3)

where DM = ∇M −ieAM , and the bar denotes complex conjugate. Because the dependence

of the fermionic Green function on the time variables, the zero-zero component of the

energy-momentum tensor reads:

〈T00(x)〉 = lim
x′→x

Tr Γ0∂0SF (x, x′) , (3.4)

which can be expressed by

〈T00(x)〉 = −i lim
x′→x

∂2
t Tr DF (x′, x) = − lim

x′→x
∂2

τ Tr DE(x, x′) . (3.5)

In the obtainment of the above expression we have to use the fact that the bispinor DF (x′, x)

is diagonal and Tr Γ0ΓiDE(x, x′) = 0.

Now after these brief comments about general properties of the VEV of the energy-

momentum tensor, we shall start explicit calculations of this quantity for massless and

massive fermionic fields specifying the dimension of the manifold.

3.1 Massless case

In this subsection we shall calculate the zero-zero component of VEV o the energy-

momentum tensor for massless fermionic fields, specifying the dimension of the manifold.

Let us start with a three dimensional cosmic string space-time.

3.1.1 N=1

The vacuum polarization effects associated with massive scalar fields in a three-dimensional

conical space-time has bee developed by Guimarães and Linet cited in [19]. Because the

calculation of the VEV of the energy-momentum tensor involves complicated integrals,

the authors give its expression only for the massless case, which coincides with with the

result found by Souradeep and Sahni, also cited in [19]. However, as far as we know, no

calculations regarding to fermionic fields in the presence of a point-like magnetic field have

developed in this space-time.

For this three-dimensional cosmic string space-time the Dirac matrices reads:

γ0 = σ3 , γ1 = ir̂ · ~σ and γ2 =
i

αr
ϕ̂ · ~σ , (3.6)

5For massive fields the trace of the VEV of energy-momentum tensor does not vanish. In fact it is

〈T A
A 〉Ren. = M2Tr DRen.(x, x).
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being σk the Pauli matrices. In this space-time the Euclidean bispinor, DE(x′, x), is the

2 × 2 diagonal matrix given below

DE(x′, x) =
eiN̄(ϕ−ϕ′)

α(2π)2
√

2rr′





∫∞
u dt S(+)(t)√

cosh t−cosh u
0

0
∫∞
u dt S(−)(t)√

cosh t−cosh u



 , (3.7)

where cosh u = (∆τ)2+r2+r′2

2rr′ . Let us take first r′ = r, ∆ϕ = 0 in S±)(t) given by (2.28),

and define new function,

I(±)(u) =

∫ ∞

u
dt

S(±)(t)√
cosh t − cosh u

. (3.8)

Introducing a new variable t := 2 arcsinh(y/
√

2), the above functions is written by

I(±)(z) = 2

∫ ∞

√
z−1

dy
√

2 + y2

S(±)(2 arcsinh(y/
√

2))
√

y2 − (z − 1)
, (3.9)

being z = cosh u = 1 + (∆τ)2

2r2 .

In order to calculate the VEV of the zero-zero component of the energy-momentum

tensor, let us write the function I(±)(z) as:

I(±)(z) = I
(±)
1 (z) + I

(±)
2 (z) = 2

∫ 1

√
z−1

dy
√

2 + y2

S̃(±)(y)
√

y2 − (z − 1)

+2

∫ ∞

1

dy
√

2 + y2

S̃(±)(y)
√

y2 − (z − 1)
, (3.10)

where S̃(±)(y) = S(±)(t(y)). Subtracting and adding into the integrand of I
(±)
1 the two

first terms of the power expansion

S̃(±)(y)
√

2 + y2
≈ α

y
+

[(1 − α2) + 6δ±(δ± − 1)]

6α
y + . . . (3.11)

we get

I
(±)
1 = I

(±)fin
1 + I

(±)sing
1 , (3.12)

where

I
(±)fin
1 (z)=2

∫ 1

√
z−1

dy
√

y2−(z−1)

[

S̃(±)(y)
√

2+y2
−α

y
− [(1−α2)+6δ±(δ±−1)]

6α
y

]

(3.13)

and

I
(±)sing
1 (z) = 2

∫ 1

√
z−1

dy
√

y2 − (z − 1)

[

α

y
+

[(1 − α2) + 6δ±(δ± − 1)]

6α
y

]

. (3.14)

As we shall show, I
(±)fin
1 together with I

(±)
2 , provide finite contributions to the VEV.

The only divergent contribution is contained in I
(±)sing
1 , which has the form

I
(±)sing
1 (z) =

2αβ√
z − 1

+
√

2 − z
[(1 − α2) + 6δ±(δ± − 1)]

3α
, (3.15)
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being

β = arctg

(

√

2 − z

z − 1

)

and z = 1 +
(∆τ)2

2r2
. (3.16)

Expanding I
(±)sing
1 in powers of ∆τ , and keeping only terms that survive after take the

second Euclidean time derivative and coincidence limit, we have

I
(±)sing
1 ≈ απ

√
2r

∆τ
+ 2(A± − α) − (3A± + α)

6r2
(∆τ)2 + O(∆τ4) , (3.17)

where we use the short notation A± = [(1−α2)+6δ±(δ±−1)]
6α .

The first term on the right hand side of (3.17) provides

D(0)
E (x′, x) =

1

4π∆τ
I(2) , (3.18)

which coincides with the Euclidean bispinor for a flat three-dimensional space-time.

The VEV of the zero-zero component of the energy-momentum tensor given by (3.5) is

divergent. In order to obtain a finite and well defined result, we should extract its divergent

part. This can be done in a manifest form by subtracting form the complete Green function

the usual Euclidean Green function as shown below:

〈T 0
0 (x)〉Ren. = lim

x′→x
∂2

τ Tr
[

DE(x, x′) −D(0)
E (x, x′)

]

= lim
x′→x

∂2
τ Tr DRen.(x, x′) . (3.19)

So in order to obtain the VEV above we need to develop three different calculations:

• The coincidence limit of the Euclidean time derivative of I
(±)ren
1 (z) = I

(±)sing
1 (z) −

απ
√

2r
∆τ :

lim
∆τ→0

∂2
τ I

(±)ren
1 (z) = −(3A± + α)

3r2
. (3.20)

• The same calculation as above but now for I
(±)fin
1 (z). In the appendix B we explicitly

show that

lim
∆τ→0

∂2
τ I

(±)fin
1 (z) =

1

r2

∫ 1

0
dy

f (±)(y)

y3
, (3.21)

being

f (±)(y) =

[

S̃(±)(y)
√

2 + y2
− α

y
− A(±)y

]

. (3.22)

• The last calculation is for I
(±)
2 (z). It is easy to show that

lim
∆τ→0

∂2
τ I

(±)
2 (z) =

1

r2

∫ ∞

1

dy

y3

S̃(±)(y)
√

2 + y2
. (3.23)
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Figure 1: These graphs provide the behaviors of both integrals in (3.24) as functions of α and γ,

admitting these parameters varying in the interval [0.1, 0.9]. The left panel corresponds the first

integral and the right panel corresponds to the second one.

Finally the renormalized VEV of the zero-zero component of the energy momentum

tensor can be written in a simpler form, after substituting the expression for A±, using the

definition for the function f (±)(y) above and expressing 2α/3 = 2α
∫∞
1 dy/y4:

〈T 0
0 (x)〉Ren. =

1

4π2α
√

2r3

[

1 − α2 − 12γ2

6α
+

∫ 1

0

dy

y3
F1(y) +

∫ ∞

1

dy

y3
F2(y)

]

, (3.24)

where

F1(y) =

[

S̃(+)(y) + S̃(−)(y)
√

2 + y2
− 2α

y
+

1 − α2 − 12γ2

6α
y

]

F2(y) =

[

S̃(+)(y) + S̃(−)(y)
√

2 + y2
− 2α

y

]

. (3.25)

The behaviors of the integrals above as functions of α and γ are exhibited in figure 1.

Having found F 0
0 the other components of the renormalized VEV of the energy-

momentum tensor can be expressed in terms of it. Assuming

〈TA
B 〉Ren. =

FA
B

r3
, (3.26)

by the diagonal form of the metric tensor, we expect that FA
B be a diagonal matrix; more-

over, the conservation conditions, ∇A〈TA
r 〉Ren. = 0, provides Fϕ

ϕ = −2F r
r and 〈TA

A 〉Ren. = 0,

F 0
0 = F r

r . So we conclude

FA
B = F 0

0 diag(1, 1, −2) . (3.27)
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3.1.2 N=2

This case corresponds to four-dimensional one. For this manifold the renormalized VEV

of the energy-momentum tensor associated with fermionic fields, has been analysed by

Linet, cited in [25], and by us in [33]. So we shall not repeat this calculation; however for

completeness we write down the zero-zero component of this tensor:

〈

T 0
0 (x)

〉

ren
=

1

2880π2α4r4

[

(α2 − 1)(17α2 + 7) + 120γ2(α2 − 2γ2 + 1)
]

. (3.28)

Also, having obtained F 0
0 the other components of the renormalized VEV of the energy-

momentum tensor can be given in terms of it. Assuming a diagonal form for this tensor, a

cylindrical symmetry and invariance under a boost along the x direction, the conservation

condition ∇A〈TA
r 〉Ren. = 0, provides Fϕ

ϕ = −3F r
r , and 〈TA

A 〉Ren. = 0, F 0
0 = F r

r = F x
x . So

we conclude

FA
B = F 0

0 diag(1, 1, 1, −3) . (3.29)

3.1.3 N=3

In braneworld scenario this manifold corresponds to a conical 3−brane having an one-

dimensional extra space transverse to it.6 The analysis of the VEV of the energy-

momentum tensor associated with scalar field in a higher-dimensional cosmic string space-

time and in the presence of a magnetic flux has been developed by Guimarães and Linet

in [29]. There, integral representations for massive scalar Green functions have been ob-

tained. Specifically for the four dimensional space, the authors calculated the renormalized

vacuum expectation value of the energy-momentum tensor, 〈T ν
µ 〉Ren., and show that consid-

ering the mass of the field equal to zero more suitable expressions are obtained. Moreover,

Linet cited in [25], using previous result calculated the VEV of the energy-momentum ten-

sor associated with fermionic fields, relating the parameter γ, the fractional part of the ratio

Φ/Φ0, with the conicity parameter α. Although a general formalism has been developed,

he only provides the vacuum energy density for a massless four-dimensional fermionic field.

The Dirac matrices for a five-dimensional cosmic string space-time, reads

Γ0 = γ(0), Γr = r̂ · ~γ , Γϕ =
1

αr
ϕ̂ · ~γ , Γx = γ(3)and Γy = iγ5 . (3.30)

Moreover, the Green function associated with this space is the 4×4 diagonal matrix below

DE(x′, x) =

(

D(2)
E (x′, x) 0

0 D(2)
E (x′, x)

)

, (3.31)

being

D(2)
E (x′, x) = − eiN̄(ϕ−ϕ′)

√
2(2π)3α(rr′)3/2

d

dz

(

I(+)(z) 0

0 I(−)(z)

)

|z=cosh u , (3.32)

6The five-dimensional cosmic string space-time has been considered in the braneworld theory with

metastable graviton on the brane in [46].
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with

I(±)(z) =

∫ ∞

arccoshz
dt

S(±)(t)√
cosh t − z

= 2

∫ ∞

√
z−1

dy
√

2 + y2

S̃(±)(y)
√

y2 − (z − 1)
. (3.33)

In the above expression we have introduced the variable t := 2 arcsinh(y/
√

2) in the second

term of the right hand side. As in the analysis developed in subsection 3.1.1, we shall divide

the integral interval form [
√

z − 1, 1] to [1, ∞], and define respective integrals by I
(±)
1 (z)

and I
(±)
2 (z). Subtracting and adding into the integrand of I

(±)
1 (z) the three first terms of

the expansion

S̃(±)(y)
√

2 + y2
≈ α

y
+ A(±)y + B(±)y3 + . . . , (3.34)

where A± = [(1−α2)+6δ±(δ±−1)]
6α and B(±) = (α2−1)(11α2+1)+30(δ±)2((δ±)2−1)2+60α2δ±(1−δ±)

180α3 ,

we have:

I
(±)
1 (z) = 2

∫ 1

√
z−1

dy
√

y2 − (z − 1)

[

S̃(±)(y)
√

2 + y2
− α

y
− A(±)y − B(±)y3

]

+2

∫ 1

√
z−1

dy
√

y2 − (z − 1)

[

α

y
+ A(±)y + B(±)y3

]

= I
(±)fin
1 (z) + I

(±)sing
1 (z) . (3.35)

The singular contribution to the VEV is contained only in I
(±)sing
1 (z), which has the

form

I
(±)sing
1 (z) =

2αβ√
z − 1

+ 2
√

2 − z

[

A(±) + B(±) (2z − 1)

3

]

, (3.36)

being β = arctg
(√

2−z
z−1

)

.

Taking the derivative of I
(±)sing
1 (z) with respect to z and substituting z = cosh u =

1 + (∆x)2

2r2 ,7 we expand the result in powers of ∆x which survive after taking the second

derivative and the coincidence limit. Doing this procedure we get

dI
(±)sing
1 (z)

dz
|
z=1+

(∆x)2

2r2

= −απr3
√

2

(∆x)3
+
(

B(±) − α

3
− A(±)

)

−(3α + 15B(±) + 5A(±))

20r2
(∆x)2 + O(∆x)4 . (3.37)

The other two contributions for the Green function are given by:

• The derivative of I
(±)fin
1 (z) which reads

dI
(±)fin
1 (z)

dz
= 2

d

dz

∫ 1

√
z−1

dy
√

y2 − (z − 1)
f̃ (±)(y) , (3.38)

7In this development we have taken first r′ = r and ϕ′ = ϕ.
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where

f̃ (±)(y) =
S̃(±)(y)
√

2 + y2
− α

y
− A(±)y − B(±)y3 . (3.39)

As mentioned in appendix B, to take the derivative above it is easier if we introduce

a new variable b =
√

z − 1 into I
(±)fin
1 (z) and change y → by. Doing this procedure

we obtain

dI
(±)fin
1 (z)

dz
=

∫ 1

b

dy
√

y2 − b2

d

dy

(

f̃ (±)(y)

y

)

− f̃ (±)(1)√
1 − b2

. (3.40)

• The third contribution comes from the derivative of I
(±)
2 , which easily provides

dI
(±)
2 (z)

dz
=

∫ ∞

1

dy

(y2 − b2)3/2

S̃(±)(y)
√

2 + y2
. (3.41)

The integrals (3.40) and (3.41) have to be evaluated at the point b = ∆x
r
√

2
.

Now taking into account all these results the Green function can be expressed by

DE(x′, x) = − 1√
2α(2π)3r3











K(+)(∆x) 0 0 0

0 K(−)(∆x) 0 0

0 0 K(+)(∆x) 0

0 0 0 K(−)(∆x)











, (3.42)

where

K(±)(z) =
dI

(±)sing
1 (z)

dz
+

dI
(±)fin
1 (z)

dz
+

dI
(±)
2 (z)

dz
. (3.43)

The formal expression for the VEV of the zero-zero component of the energy-

momentum tensor is given by (3.5). However this expression is divergent, and the term

responsible for that is precisely the first term on the right hand side of (3.37), which when

substituting into into (3.31) provides

D(0)
E (x′, x) =

1

8π2(∆x)3
I(4) . (3.44)

So, in order to obtain a finite and well defined result to this VEV we should extract its

divergent part. Here, this also can be done in a manifest form by subtracting form the

complete Green function the usual Euclidean Green given above:

〈T 0
0 (x)〉Ren. = lim

x′→x
∂2

τ Tr
[

DE(x, x′) −D(0)
E (x, x′)

]

= lim
x′→x

∂2
τ Tr DRen.(x, x′) . (3.45)

Finally we are in position to write down the the zero-zero component of the renormal-

ized VEV of the energy-momentum tensor in a simpler form. Substituting the expressions

– 18 –



J
H
E
P
0
9
(
2
0
0
8
)
0
0
5

Figure 2: These graphs exhibit the behaviors of the integrals in (3.46) as functions of α and γ,

admitting these parameters in the interval [0.1, 0.9]. The left panel corresponds the first integral

and the right panel corresponds to the second one.

for A(±) and B(±), using definition for the function f̃ (±)(y) and some intermediates steps

we get:

〈T 0
0 (x)〉Ren. =

1

8π3α
√

2r5

[

(α2 − 1)(23α2 − 7) − 120γ2(1 − 3α2 − 2γ2)

240α2

− 3

∫ 1

0

dy

y5
F3(y) − 3

∫ ∞

1

dy

y5
F4(y)

]

, (3.46)

where

F3(y) =
S̃(+)(y) + S̃(−)(y)

√

2 + y2
− 2α

y
+

(1 − α2 − 12γ2)

6α
y

+
[(α2 − 1)(17α2 + 7) + 120γ2(1 + α2 − 2γ2)]

720α3
y3

F4(y) =

[

S̃(+)(y) + S̃(−)(y)
√

2 + y2
− 2α

y

]

. (3.47)

Here also it is not possible to provide analytical expressions for the integrals above. The

numerical behaviors for both integrals are plotted in figure 2 as functions of the parameters

α and γ.

The other components of the energy-momentum tensor can be obtained from the zero-

zero one, by using the conservation condition (3.1), the absence of trace anomaly (3.2) and

the boosts symmetry in the directions parallel to the string. Writing

〈TA
B (x)〉Ren. =

FA
B

r5
, (3.48)
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we can easily show that

FA
B = F 0

0 diag(1, 1, −4, 1, 1) . (3.49)

3.1.4 N=4

As we have mentioned beforee [8, 9], the gravitational effects associated with strings have

been considered as responsible for compactification from six to four dimensional space-

time. In this scenario the bulk is represented by a conical 3−brane transverse to a two

dimensional space.

The manifold analyzed by us here presents a simpler geometrical structure. The bulk

corresponds to an idealized conical 3−brane transverse to a flat two dimensional space.

The explicit analysis of the VEV of the energy-momentum tensor developed here is a

new one. Fortunately, it becomes much simpler when compared with the previous analysis

because the respective Green function can be expressed in terms of elementary functions.

In this six-dimensional cosmic string space-time, the Dirac matrices are in the

form (2.2), and the Green function is expressed in terms of a diagonal 8 × 8 matrix:

DE(x′, x) =













D(2)
E (x′, x) 0 0 0

0 D(2)
E (x′, x) 0 0

0 0 D(2)
E (x′, x) 0

0 0 0 D(2)
E (x′, x)













, (3.50)

being

D(2)
E (x′, x) =

eiN̄(ϕ−ϕ′)

16π3α(rr′)2 sinh3 u
(3.51)

×
(

cosh uS(+)(u)−sinh uS′(+)(u) 0

0 cosh uS(−)(u)−sinhS′(−)(u)

)

,

with S(±)(u) having the same functional form as S(±)(t) given in (2.28).

As we have already discussed, the calculation of the renormalized VEV of the zero-zero

component of the energy-momentum tensor can be calculated by applying the second order

Euclidean time derivative on the renormalized Green function:

〈T 0
0 (x)〉Ren. = lim

x′→x
∂2

τ Tr
[

DE(x, x′) −D(0)
E (x, x′)

]

= lim
x′→x

∂2
τ Tr DRen.(x, x′) , (3.52)

where D(0)
E (x, x′) is promptly obtained from (3.50) by taking α = 1 and γ = 0. After some

intermediate steps we obtain for the energy density the result below:

〈T 0
0 (x)〉ren = − 1

120960π3α6r6

[

−367(1 − α2)3 + 12(189γ2 + 76)(1 − α2)2

+144(35γ4−49γ2−4)(1−α2)+1344γ2(γ2−1)(γ2−4)
]

. (3.53)

The other components of the energy-momentum tensor can be computed by using the

conservation condition, the absence of trace anomaly and the boost symmetry along the

directions parallel to the string. So we have:

〈TA
B (x)〉Ren. =

FA
B

r6
, (3.54)
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where

FA
B = F 0

0 diag(1, 1, −5, 1, 1, 1) (3.55)

being F 0
0 given in (3.53).

3.2 Massive case

Here we shall analyze the VEV associated with massive field under the circumstance spec-

ified in 2.2. In order to that we shall adopt the bispinor (2.41) to calculate the fermionic

Green function. However, before to start the calculation let us analyse this bispinor in

the coincidence limit. Taking x′ → x we verify that the result is divergent and that the

divergence comes exclusively form the k = 0 component. So, in order to obtain a finite

and well defined result we should apply some renormalization prescription. This procedure

can be applied in a manifest form by subtracting from (2.41) its k = 0 component. So the

renormalized Green function is given by

D(2)
Ren.(x

′, x) =
eiN̄∆ϕ

(2π)N/2+1
MN/2

q−1
∑

k=1

1

(ρk)N/2
KN/2(Mρk)

(

1 0

0 ei(1−1/q)∆ϕe−2iπk/q

)

. (3.56)

Before to start the calculation of the renormalized VEV of the energy-momentum

tensor, we shall analyse the behavior of the renormalized bispinor in the coincidence limit.

Considering first the upper diagonal component of (3.56), we have

D(+)
Ren.(x, x) =

MN/2

(2π)N/2+1(2r)N/2

q−1
∑

k=1

KN/2(2Mr sin(kπ/q))

(sin(kπ/q))N/2
. (3.57)

We can see that the D(+)
Ren.(x, x) is positive everywhere. Now we would like to analyse this

expression in two limiting cases:

• In the limit Mr ≫ 1/ sin(kπ/q), the main contribution comes from k = 1 and k = q−1

and the leading term is

D(+)
Ren.(x, x) ≈ M

N−1
2

(4π)
N+1

2

e−2Mr sin(π/q)

(r sin(π/q))
N+1

2

. (3.58)

• For the massless limit,

D(+)
Ren.(x, x) =

Γ(N/2)

(4π)N/2+1rN

q−1
∑

k=1

1

sin(kπ/q))N
. (3.59)

For even N , the summation on the right hand side of (3.59) can be developed by using

the formulas [35]

IN+2(x) =
I ′′N (x) + N2IN (x)

N(N + 1)
and I2(x) =

q2

sin2(qx)
− 1

sin2(x)
. (3.60)
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for the sum

IN (x) =

q−1
∑

k=1

1

sinN (x + kπ/q)
. (3.61)

In particular for a four dimensional space, N = 2, I2(0) = (q2−1)
3 . So we have

D(+)
Ren.(x, x) =

q2 − 1

48π2r2
. (3.62)

For a six-dimensional space, I4(x) is a long expression obtained by the recurrence relation

above, however we find I4(0) = (q2−1)(q2+11)
45 , consequently

D(+)
Ren.(x, x) =

(q2 − 1)(q2 + 11)

2880π3r4
. (3.63)

The above results, eq.s (3.62) and (3.63), are analytical functions of q, and by analytical

continuation are valid for all arbitrary values of q.

A similar analysis can also developed for the lower diagonal component of (3.56). So

let consider

D(−)
Ren.(x, x) =

MN/2

(2π)N/2+1(2r)N/2

q−1
∑

k=1

KN/2(2Mr sin(kπ/q))

(sin(kπ/q))N/2
e−2ikπ/q . (3.64)

In the two limiting cases above we have

• For Mr ≫ 1/ sin(kπ/q) we find

D(−)
Ren.(x, x) ≈ M

N−1
2

(4π)
N+1

2

cos(2π/q)e−2Mr sin(π/q)

(r sin(π/q))
N+1

2

. (3.65)

• For the massless limit,

D(−)
Ren.(x, x) =

Γ(N/2)

(4π)N/2+1rN

q−1
∑

k=1

e−2ikπ/q

sin(kπ/q))N
. (3.66)

In order to develop the sum in (3.66) for N even, the relevant formula is

KN =

q−1
∑

k=1

e−2ikπ/q

sin(kπ/q))N
=

q−1
∑

k=1

cos(2kπ/q)

sin(kπ/q))N
= IN (0) − 2IN−2(0) . (3.67)

For a four-dimensional space K2 = I2(0) − 2I0(0) = (q2−1)
3 − 2(q − 1) = (q−1)(q−5)

3 ,

consequently

D(−)
Ren.(x, x) =

(q − 1)(q − 5)

48π2r2
. (3.68)

For six-dimensional space, K4 = I4(0) − 2I2(0) = (q2−1)(q2−19)
45 and

D(−)
Ren.(x, x) =

(q2 − 1)(q2 − 19)

2880π3r4
. (3.69)
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Now let us proceed the calculation of 〈TM
N (x)〉Ren.. Although we shall concentrate the

analysis of this quantity for a six-dimensional cosmic string spacetime, below we present

its zero-zero component for a general value of N . By using previous result,

〈T 0
0 (x)〉Ren. = lim

x′→x
∂2

τ Tr DRen.(x, x′) , (3.70)

and substituting the Euclidean bispinor expressed by its diagonal form given in terms

of (3.56), after some intermediate steps we obtain

〈T 0
0 (x)〉Ren = − 2MN/2+1

π(4π)N/2rN/2+1

q−1
∑

k=1

cos2(kπ/q)

(sin(kπ/q))N/2+1
KN/2+1(2Mr sin(πk/q)) . (3.71)

From (3.71) we can observe that the energy density is non-positive quantity everywhere,

vanishing only for q = 2. For this case the contributions from the upper and lower com-

ponent of the bispinor (3.56) cancel each other. Moreover in the limit Mr ≫ 1/ sin(kπ/q)

the leading order is

〈T 0
0 (x)〉Ren ≈ − 1

π(4π)(N−1)/2 r

(

M

r

)(N+1)/2

× cos2(π/q)

(sin(π/q))(N+3)/2
e−2Mr sin(π/q) , (3.72)

with exponentially suppressed behavior.

In the massless limit case, the energy density became expressed in terms of elementary

functions,

〈T 0
0 (x)〉Ren = − Γ(N/2 + 1)

π(4π)N/2rN+2

q−1
∑

k=1

cos2(kπ/q)

(sin(kπ/q))N+2
. (3.73)

For even N , the summation on the right side of the above equation can be expressed in

terms of analytical functions of q as shown below:

〈T 0
0 (x)〉Ren = − Γ(N/2 + 1)

π(4π)N/2rN+2
(IN+2(0) − IN (0)) . (3.74)

For N = 4, we easily find from the recurrence formula (3.60), I6(0) =
1

945 (q2 − 1)(2q4 + 23q2 + 191), consequently

〈T 0
0 (x)〉Ren = −(q2 − 1)(q4 + q2 − 20)

3780π3r6
. (3.75)

The above quantity is positive for 1 < q < 2.8

Now going back to the general expression (3.71), in figure 3 are plotted the behaviors

of 〈T 0
0 〉Ren./M

N+2 as function of Mr for different values of N and the parameter q. As

we have discussed, for large value of Mr the energy density tends to zero exponentially.

The right panel explicitly shows that the modulus of the energy density increases when q

becomes larger.

Now after this discussion about the behavior of the energy density for a general value

of N , let us specialize in a six-dimensional cosmic string spacetime. Below we present the

most important analytical results:

8Substituting α = 1
q

and γ = q−1
2q

into (3.53) we re obtain (3.75).
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Figure 3: These graphs represent the dependences of 〈T 0
0 〉Ren./M

N+2 with Mr for different values

of the parameters N and q. The left panel corresponds to q = 4 and N = 2, 3, 4, and the right

panel corresponds to N = 4 and q = 3, 4, 5.

• Taking advantage of previous result we can promptly write down the zero-zero com-

ponent of the VEV of the energy-momentum tensor. It is

〈T 0
0 (x)〉Ren. = − M3

8π3r3

q−1
∑

k=1

cos2 (kπ/q)

sin3 (kπ/q)
K3 [2Mr sin (kπ/q)] . (3.76)

• The radial pressure, 〈T r
r 〉, can be calculated as shown below:

〈Trr(x)〉Ren. =
1

2
lim

x′→x
Tr [Γr (∂r − ∂r′)]SF

(

x, x′) . (3.77)

By using (2.11) to calculate the Feynman propagator, we can write

〈Trr(x)〉Ren. =
1

2
lim

x′→x
Tr

[

(∂r − ∂r′)

[

∂r +
i

αr
Σ

(3)
(8) (∂ϕ − ieAϕ)

− 1

2αr
(1 − α)

]]

DE

(

x, x′) . (3.78)

Using eAϕ = N̄ + γ, γ = 1−α
2 , α = 1/q and the identities

ΓrΓ
r = −I , ΓrΓ

θ = − i

αr
Σ

(3)
(8) and ΓrΓ

θΠθ = − i

2αr
(1 − α)I , (3.79)

after a long calculation we find

〈T r
r (x)〉Ren. = − M3

8π3r3

q−1
∑

k=1

cos2(kπ/q)

sin3(kπ/q)
K3[2Mr sin(kπ/q)] . (3.80)
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• From the conservation condition ∇A〈TA
r 〉Ren. = 0, the azimuthal pressure, 〈Tϕ

ϕ 〉, can

be obtained in terms of the radial one

〈Tϕ
ϕ (x)〉Ren. = ∂r (r〈T r

r (x)〉Ren.) . (3.81)

Substituting (3.80) into the above expression we get

〈Tϕ
ϕ (x)〉Ren. =

M3

8π3r3

q−1
∑

k=1

cos2(kπ/q)

sin3(kπ/q)
{5K3[2Mr sin(kπ/q)]

+ 2K2[2Mr sin(kπ/q)]Mr sin(kπ/q)} . (3.82)

• For the pressures along the directions parallel to the string we have (no summation

over i)

〈T i
i 〉Ren. = 〈T 0

0 〉Ren. , i = 3, 4, 5 . (3.83)

• Now on basis on the results obtained, we can verify the correct trace of the energy-

momentum tensor:

〈TA
A (x)〉Ren. =

M4

4π3r2

q−1
∑

k=1

cos2(kπ/q)

sin2(kπ/q)
K2 [2Mr sin(kπ/q)] = M2TrDRen.(x, x) . (3.84)

4. Conclusion and discussions

In this paper we have investigated the local one-loop quantum gravity effects associated

with charged fermionic fields in a higher-dimensional cosmic string spacetime. As the

first steps in the evaluation of the renormalized VEV of the energy-momentum tensor, in

section 2 we calculated the general Euclidean Green function, which is expressed in terms

of not-solvable integral for a general situation. However, two limiting cases provide more

workable expressions which were explicitly analyzed: i) the massless case, and ii) the mas-

sive one with α = 1
q , being q an integer number, and γ = 1−α

2 . For the latter, we were able

to express the Green function in terms of a finite sum of modification Bessel functions, Kµ.

In section 3, we considered the VEV of the energy-momentum tensor. For the massless

case, we calculated, in explicit form, the energy-density for different dimensions. For

even dimensions, 〈T 0
0 〉Ren. is expressed in terms of elementary functions; however for odd

dimensions, it is given in terms of integrals expressions. For these situations we provided

numerical analysis, as shown in figures 1 and 2. Being q an integer number and γ = q−1
2q , the

corresponding renormalized VEV of the energy-momentum tensor is expressed in a closed

form for massive fields. To our knowledge no such closed expression has been given before

in the literature. For an arbitrary value for N , we explicitly shown the behaviors of the

energy-density for several limiting cases. For points near the string, it behaves as 1/rN+2,

and for points far away from it, presents an exponentially suppressed behavior. Finally, for

a six-dimensional space, we calculated completely all components of the energy-momentum

tensor, and shown they provide the trace identity.
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An interesting point which deserves to be mentioned is that the effects on the renor-

malized VEV of the energy-momentum tensor due to the conical structure of the spacetime

and the magnetic interaction, may cancel each other. This was explicitly observed in Sub-

section 3.2 for q = 2 and γ = 1
4 , and can be also verified in the results found for the

energy-densities given in (3.28) and (3.53). In fact, for these specials values, and taking

∆ϕ = 0, the upper and lower components of (2.30) can be expressed as

D(+)
E (x′, x) =

1

4π2r2

cosh u

sinh2 u

D(−)
E (x′, x) =

1

4π2r2

1

sinh2 u
, (4.1)

with cosh(u) given by (2.24), which coincides with the respective quantities found by

image method,

D(+)
E (x′, x) =

1

4π2

[

1

ρ2
0

+
1

ρ2
1

]

D(−)
E (x′, x) =

1

4π2

[

1

ρ2
0

− 1

ρ2
1

]

, (4.2)

being ρ0 and ρ1 given in (2.42). In this situation the contributions on the renormalized

VEV of the energy-momentum tensor due to the upper and lower components of the

Feynman propagator cancel each other.

The renormalization procedure adopted in this paper to calculate the vacuum expec-

tation value of the fermionic energy-momentum tensor was the point-splitting one. In this

sense we had analysed the behavior of this quantity at the coincidence limit and extracted

all the divergences in manifest form by using the Hadamard function.9 It has been proved

that this procedure provides finite and well defined results [47]. An alternative regulariza-

tion procedure can also be used. The local ζ−function procedure leads essentially to the

same conclusions as given by the point-splitting one [49]. The DeWitt-Schwinger expansion

of the Green function for an n−dimensional curved spacetime is given in [41, 44]. So, by

using the dimensional regularization, it follows from the general expression that for the

cosmic string spacetime this expansion contains a single term only,

GDS
F (x′, x) =

iπ

(4πi)n/2

(

− z

2im2

)1−n/2
H

(2)
n/2−1(z) , (4.3)

where H
(2)
ν is the Hankel function of the second kind, z2 = −2m2σ being σ the one-half

of the square of the geodesic distance. The above function coincides with the Minkowski

Green function. The subtracted contribution due to this function renormalizes the

cosmological constant.

All these regularization procedures lead to the same finite result for renormalized

quantities.

9Because the cosmic string spacetime is locally flat the Hadamard function coincides with the usual

Green one.
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A. The generalization formula of the generating function of modified

Bessel function Iν

The method of images applied in (2.2.1) to calculate the Green function associated with

massive fermionic fields in a conical space-time and in the presence of a magnetic flux

running along the string, is an application of the generalization formula of the generating

function for the modified Bessel functions of integer order. It well known that

ex/2(t+1/t) =
∞
∑

n=−∞
In(x)tn . (A.1)

Taking t = eiϕ we have

ex cos ϕ =
∞
∑

n=−∞
In(x)einϕ . (A.2)

Making the change ϕ → ϕ + 2πk
q in (A.2), and summing over k from 0 until q − 1, we may

write

q−1
∑

k=0

ex cos(ϕ+2πk/q) =

∞
∑

n=−∞
In(x)einϕ

q−1
∑

k=0

ei2πnk/q . (A.3)

Now using the identity

q−1
∑

k=0

ei2πnk/q = q
∞
∑

m=−∞
δn,mq (A.4)

we obtain

q−1
∑

k=0

ex cos(ϕ+2πk/q) = q
∞
∑

m=−∞
Imq(x)eimqϕ . (A.5)

B. Explicit calculation of F
0

0

In order to find the expression (3.21) for the limit case analysed, our first steps is to define

a new variable b =
√

z − 1 = ∆τ√
2r

. In terms of this variable we may express I
(±)fin
1 (z) as:

I
(±)fin
1 (z) = 2

∫ ∞

b

dy
√

y2 − b2
f (±)(y) , (B.1)
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being f (±)(y) given by (3.22). Using the fact that ∂2
τ = (1/2r2)∂2

b we have

∂2
τ I

(±)fin
1 (z) =

1

r2

d2

db2

∫ ∞

b

dy
√

y2 − b2
f (±)(y) . (B.2)

Because the integrand is divergent at the point y = b, we have to change the variable

y → by before applying the Leibnitz formula for derivative of an integral. So the second

derivative has the form below,

d2

db2

∫ ∞

b

dy
√

y2−b2
f (±)(y)=

1

b2

∫ 1

b

dy y2

√

b2−y2
f ′′(±)(y)− f ′(±)(1)

b2
√

1−b2
+

f (±)(1)(1−2b2)

b2(1−b2)3/2
, (B.3)

which can be written as

d2

db2

∫ ∞

b

dy
√

y2 − b2
f (±)(y) =

∫ 1

b

dy
√

y2 − b2

(

f ′′(±)(y) − f ′(±)(y)

y
+

f (±)(y)

y2

)

− f ′(±)(1)√
1 − b2

− f (±)(1)b2

(1 − b2)3/2
. (B.4)

Taking the limit b → 0 we obtain

d2

db2

∫ ∞

b

dy
√

y2 − b2
f (±)(y) →

∫ 1

0
dy

f (±)(y)

y3
. (B.5)

We can see that the integral above is finite because for small value of y, f (±)(y) →
(α2−1)(11α2+1)+30(δ±)2((δ±)2−1)2+60α2δ±(1−δ±)

180α3 y3.
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